Electronic band structure of a Carbon nanotube superlattice

Authors

  • A. A. Shokri Department of Physics, Payame Noor University (PNU), 19395-3697, Tehran, Iran.
  • Z. Karimi Department of Physics, Islamic Azad University North Tehran Branch, Tehran, Iran.
Abstract:

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are based on the tight binding model in the nearest-neighbor approximation. We seek to describe electronic band structure in the presence of the pentagon-heptagon pairs. Our calculation  show  that the pentagon–heptagon  pairs  defect  in  the  nanotube  structures is not only responsible  for  a  change  in  a  nanotube  diameter,  but  also governs  the  electronic  behaviour  around  Fermi  level.  Also, we obtain the Fermi energy of the system via integration of the density of states and matching it to the number of electron in the unit cell. The numerical results may be useful to design of electronic devices based on CNTs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

electronic band structure of a carbon nanotube superlattice

by employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (cnt) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. the calculations are base...

full text

Electronic structure of carbon nanotube ropes

We present a tight-binding theory to analyze the motion of electrons between carbon nanotubes bundled into a carbon nanotube rope. The theory is developed starting from a description of propagating Bloch waves on ideal tubes, and the effects of intertube motion are treated perturbatively on this basis. Expressions for the interwall tunneling amplitudes between states on neighboring tubes are de...

full text

Electronic band structure of carbon nanotube superlattices from first-principles calculations

A. Ayuela,1 L. Chico,2 and W. Jaskólski3 1Donostia International Physics Center (DIPC) and Unidad de Física de Materiales, Centro Mixto CSIC-UPV/EHU, 20080 Donostia, Spain 2Departamento de Física Aplicada, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, 45071 Toledo, Spain 3Instytut Fizyki UMK, Grudziądzka 5, 87-100 Toruń, Poland Received 4 August 2007; revised manus...

full text

Electronic structure control of single-walled carbon nanotube functionalization.

Diazonium reagents functionalize single-walled carbon nanotubes suspended in aqueous solution with high selectivity and enable manipulation according to electronic structure. For example, metallic species are shown to react to the near exclusion of semiconducting nanotubes under controlled conditions. Selectivity is dictated by the availability of electrons near the Fermi level to stabilize a c...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  63- 67

publication date 2014-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023